OBLICZ SUMĘ. a} 3/10+5/10= 0,3+0,5=. b} 9i2/10+12i9/10= 9,2+12,9=. c] 15 5/10 +27 8/10= 15,5+27,8=. d] 14 7/10 + 6 6/10 = 14,7+6,6=. e]12 810+37 7/10= 12,8+37,7=. f] 13 6/10 +11 8/10= 13,6+11,8=. g] 2 72/100+3 45/100= 2,72+3,45=. h] 12 3/100+5 12/100= 12,03+5,12=.
Oblicz sumę 20 początkowych wyrazów tego ciągu o numerach nieparzystych. output: Sumą n początkowych wyrazów ciągu arytmetycznego jest równa −74+14n2, dla dowolnej liczby N∊N+. Oblicz sumę dwudziestu początkowych wyrazów tego ciągu o numerach nieparzystych. Z góry dzięki za pomoc. 16 gru 00:51 Goś: Sn=−74+14n2 n={1,3,5,7,9,11,13,15,17,19} 2n−1=19 => n=10 S10= 102 * 14 − 74 S10= 25−1,75 = 23,25 Tak mi się wydaje 16 gru 01:03 output: nie pasuje do klucza... 16 gru 01:10 Artur_z_miasta_Neptuna: 7 1 6 S1 = − + (12} = − = a1 4 4 4 7 4 3 3 S2 = a1+a2 = − + = − ⇒ a2 = + 4 4 4 4 a1 + a39 6 6 672 S*n = *20 = (− +(− + 38*r))*10 = *10 = 1'680 2 4 4 4 16 gru 01:26 output: też niestety to nie jest to. wynik ma być S=160. 16 gru 17:56 milord: wyszło mi 7 1 chodzi o to,że popełniłes błąd we wzorze na sumę ma byc −n+n2 4 4 7 zapomiałeś o "n" po − 4 wtedy wychodzi to tak: 7 1 S1=−+ a to = a1 4 4 7 1 7 4 5 S2=a1+a2=−*2+*22=−+=− 4 4 2 4 2 a2−a1=r mamy obliczy sumę 20 wyrazów,czyli n=20 osatni wyraz nieparzysty to a39 ze wzoru na liczby nieparzyste 2n−1 6 6 1 a39=−+38*r = − +19=17 4 4 2 i teraz prościotko 6 1 S−20=−+17 *20/2 4 2 S20=16*10=160 i chyba o taki wynik chodziło 17 lut 20:59 łakom: zapomiałem o wyniku S1 17 lut 21:26
Zdanie: Do różnicy liczb 5 i 0,3 dodaj kwadrat liczby 4 można zapisać w postaci wyrażenia: 6 5 5 4 2 5 4 2 5 42 5 4 A. 6 − 0,3 + 5 B. 6 + 0,3 − 5 C. 6 − 0,3 + 5 D. 6 − 0,3 + 52 9. Żyłkę o długości 15 m trzeba pociąć na kawałki o długościach 1,2 m i 75 cm. Krótszych kawałków ma być 12.

19 marca, 2018 27 września, 2018 Zadanie 17 (0-2) Na rysunku przedstawiono dwie różne ściany prostopadłościanu. Jedna jest kwadratem o boku 5 cm, a druga – prostokątem o bokach 3 cm i 5 cm. Źródło: CKE Egzamin ósmoklasisty arkusz przykładowy Oblicz sumę długości wszystkich krawędzi prostopadłościanu o takich wymiarach. Zapisz obliczenia. Źródło CKE - Arkusz pokazowy 2018/2019 Analiza: Spójrz na kartę poniżej. Przesuwając suwakiem wykonasz następujące 3 kroki tego zadania: W pierwszym kroku poszukajmy wspólnej krawędzi obu ścian. Obie ściany możemy połączyć krawędzią o tej samej długości, czyli 5. W drugim kroku dorysujmy pozostałe ściany prostopadłościanu, aby stworzyć rysunek poglądowy. W trzecim kroku policzmy, ile jest krawędzi o długości 3, a ile krawędzi o długości 5. Z rysunku wynika: 4 krawędzie o długości 3 i 8 krawędzi o długości 5, czyli suma długości wszystkich krawędzi wynosi: Odpowiedź: Egzaminy ósmoklasisty Przykładowy egzamin ósmoklasisty 2018/2019 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Egzamin ósmoklasisty czerwiec 2020 2020 Zadania z egzaminu próbnego ósmoklasisty z czerwca 2020. Po publikacji arkusza przez CKE zadania będą pojawiały się na stronie. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Dołącz do grupy na FB W prezencie od Mikołaja uruchamiamy grupę :). Chcesz mieć wpływ na to co i kiedy pojawia się na obliczu matematyki? Dołącz do grupy zamkniętej, Szczegóły na grupie … Wystartowaliśmy Próbny egzamin ósmoklasisty kwiecień 2020 2020 Zadania z egzaminu próbnego ósmoklasisty z kwietnia 2020. Próbny egzamin ósmoklasisty grudzień 2018 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Zdaj bez obaw! Wszystko co powinieneś wiedzieć o egzaminie ósmoklasisty Egzamin ósmoklasisty to pierwszy poważny sprawdzian wiedzy, który weryfikuje znajomość zagadnień z poprzednich lat nauki. Wiąże się on ze stresem, godzinami powtórzeń materiału, czasem z koniecznością pomocy korepetytorów i nauczycieli. Co powinieneś wiedzieć o egzaminie ósmoklasisty, by zdać go bez obaw? Czytaj dalej Egzamin ósmoklasisty maj 2021 2021 Zadania z egzaminu próbnego ósmoklasisty z Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Egzamin ósmoklasisty maj 2022 2022 Zadania z egzaminu ósmoklasisty z Zadanie bez odpowiedzi i analizy Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią

emma82310. You have to add those two together, so your problem would look like this: 5 (your whole mumber) 9/13 (your fraction) 5 9/13 + 5 9/13 = 10 - the whole number. 9/13 + 9/13 = 18/13 since the denomentator always stays the same! (the bottom half) so, we have to make 18/13 a proper fraction since its mixed right now.

oblicz sumę elwira: oblicz sumę: 13,5 − 16,5 + 19,5 − 22,5 + ... + 3019,5 − 3022,5 + 3025,5 9 sty 19:06 Aga: (13,5+16,5+...+3025,5)+(−16,6−22,5−...−3022,5) Oblicz oddzielnie sumy dwóch ciągów arytmetycznych. 9 sty 19:10
Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0. Materiał składa się z sekcji: "Odejmowanie liczb całkowitych na kalkulatorze", "Odejmowanie liczb całkowitych na osi liczbowej", "Odejmowanie liczb całkowitych – zadania generatorowe".Materiał zawiera ilustracje (fotografie, obrazy, rysunki), ćwiczenia, w tym 1) Oblicz sumę liczb 37 i 29 2) Oblicz różnicę liczb 56 i 28 3) Oblicz sumę liczb 42 i 15 4) Oblicz różnicę liczb 95 i 34 5) Oblicz różnicę liczb 18 i 9 6) Oblicz sumę liczb 13 i 76 7) Oblicz sumę liczb 55 i 30 8) Oblicz różnicę liczb 55 i 30 9) Oblicz sumę liczb 34 i 34 10) Oblicz różnicę liczb 100 - 0 Ranking Odkryj karty jest szablonem otwartym. Nie generuje wyników na tablicy. Wymagane logowanie Opcje Zmień szablon Materiały interaktywne Więcej formatów pojawi się w czasie gry w ćwiczenie. 1 . Oblicz sumę -5 -7 -9 - . -29 -31 , której składniki są kolejnymi wyrazami ciągu arytmetycznego .. Question from @Aszkaa16 - Liceum/Technikum - Matematyka
1. a[1]=9, r=4a[n]=81 ---> 9+(n-1)*4=81 ---> n=...?Wzór na sumę n wyrazów Tutaj a=b P=a^2/2 -----> a=√(2P) =√8 =2√23. 3*8*11=...?4. a^2+b^2+2 = 2a+2ba^2-2a+1 +b^2-2b+1)=0(a-1)^2+(b-1)^2=0. To możliwe tylko, gdy a-1=0i b-1=05. x^2+6x+9 +y^2 -8y+16 = -21+9+16(x+3)^2 +(y-4)^2 = 4S=(-3,4), r=2 a) x= -3 -2, b) x= -3+2Czy wszystko jasne?
Znajdź odpowiedź na Twoje pytanie o Oblicz sumę n początkowych wyrazów ciągu arytmetycznego an jeżeli a) a1=- 3, a3+a4=9, n=15 b) a2=2, a12 -a9=15, n=7 Zestaw zadań maturalnych z lat ubiegłych posegregowanych tematycznie. Temat przewodni zestawu - CIĄGI Czytaj dalej"Arkusz maturalny - ciągi" Zadanie 14 (0-1) Ciąg geometryczny (an), określony dla każdej liczby naturalnej n≥1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a3=a1·a2. Niech q oznacza iloraz ciągu (an). Wtedy Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura czerwiec ( poziom podstawowy Czytaj dalej"Matura czerwiec 2021 p. podstawowy matematyka - z. 14" Zadanie 5 (0-2) Oblicz granicę W poniższe kratki wpisz kolejno – od lewej do prawej – cyfrę jedności i pierwsze dwie cyfry po przecinku skończonego rozwinięcia dziesiętnego otrzymanego wyniku. Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj ( poziom podstawowy Czytaj dalej"Matura maj 2021 p. rozszerzony matematyka - z. 5" Zadanie 13 (0-1) Trzywyrazowy ciąg jest geometryczny i wszystkie jego wyrazy są dodatnie. Stąd wynika, że Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura maj ( poziom podstawowy Czytaj dalej"Matura maj 2021 p. podstawowy matematyka - z. 13" Zadanie 11 (0-1) Ciąg (x, y, z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy 64. Stąd wynika, że y jest równe A. B. C. 4 D. 3 Źródło CKE - Arkusz egzaminacyjny 2020/2021 - Matura marzec ( poziom podstawowy Czytaj dalej"Matura 2021 p. podstawowy matematyka - z. 11" Zadanie 15 (0-1) W ciągu arytmetycznym (an), określonym dla n≥1, czwarty wyraz jest równy 3, a różnica tego ciągu jest równa 5. Suma a1+a2+a3+a4 jest równa A. -42 B. -36 C. -18 D. 6 Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj ( poziom podstawowy Czytaj dalej"Matura 2020 p. podstawowy matematyka - z. 15" Zadanie 14 (0-1) Ciąg (an) jest określony wzorem an=2n2 dla n≥1. Różnica a5-a4 jest równa Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj ( poziom podstawowy Czytaj dalej"Matura 2020 p. podstawowy matematyka - z. 14" Zadanie 10 (0-5) W trzywyrazowym ciągu geometrycznym (a1, a2, a3), spełniona jest równość . Wyrazy a1, a2, a3 są – odpowiednio – czwartym, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz a1. Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj ( poziom podstawowy Czytaj dalej"Matura maj 2020 p. rozszerzony matematyka - z. 10" Zadanie 2 (0-1) Ciąg (an) jest określony wzorem dla każdej liczby naturalnej n≥ tego ciągu jest równa Źródło CKE - Arkusz egzaminacyjny 2019/2020 - Matura maj ( poziom podstawowy Czytaj dalej"Matura maj 2020 p. rozszerzony matematyka - z. 2" Zadanie 12 (0-1) Wszystkie wyrazu ciągu geometrycznego (an), określonego dla n≥1, są liczbami dodatnimi. Drugi wyraz tego ciągu jest równy 162, a piąty wyraz jest równy 48. Oznacza to, że iloraz tego ciągu jest równy Czytaj dalej"Matura 2019 p. pdst. sierpień matematyka - z. 12" Zadanie 11 (0-1) W ciągu arytmetycznym (an), określonym dla n≥1, dane są dwa wyrazy: a1=-11 i a9=5. Suma dziewięciu początkowych wyrazów tego ciągu jest równa A. -24 B. -27 C. -16 D. -18 Czytaj dalej"Matura 2019 p. pdst. sierpień matematyka - z. 11" Zadanie 30 (0-2) W ciągu geometrycznym przez Sn oznaczamy sumę n początkowych wyrazów tego ciągu, dla liczb naturalnych n≥1. Wiadomo, że dla pewnego ciągu geometrycznego: S1=2 i S2 =12 . Wyznacz iloraz i piąty wyraz tego ciągu. Czytaj dalej"Matura 2019 p. pdst. czerwiec matematyka - z. 30" Zadanie 10 (0-1) W ciągu (an) określonym dla każdej liczby n≥1 jest spełniony warunek an+3=-2·3n+1. Wtedy A. a5=-54 B. a5=-27 C. a5=27 D. a5=54 Czytaj dalej"Matura 2019 p. pdst. czerwiec matematyka - z. 10" Zadanie 9 (0-1) Dany jest rosnący ciąg arytmetyczny (an), określony dla liczb naturalnych n≥1, o wyrazach dodatnich. Jeśli a2+a9=a4+ak, to k jest równe: Czytaj dalej"Matura 2019 p. pdst. czerwiec matematyka - z. 9" Zadanie 32 (0-4) Ciąg arytmetyczny (an) jest określony dla każdej liczby naturalnej n≥1. Różnicą tego ciągu jest liczba r=−4, a średnia arytmetyczna początkowych sześciu wyrazów tego ciągu: a1, a2, a3, a4, a5, a6 jest równa 16. a) Oblicz pierwszy wyraz tego ciągu. b) Oblicz liczbę k, dla której ak=-78. Czytaj dalej"Matura 2019 p. podstawowy matematyka - z. 32" Zadanie 12 (0-1) Dany jest ciąg geometryczny (an), określony dla n≥1. Wszystkie wyrazy tego ciągu są dodatnie i spełniony jest warunek a5/a3=1/9. Iloraz tego ciągu jest równy A. 1/3 B. 1/√3 C. 3 D. √3 Czytaj dalej"Matura 2019 p. podstawowy matematyka - z. 12" Zadanie 11 (0-1) W ciągu arytmetycznym (an), określonym dla n≥1, dane są dwa wyrazy: a1=7 i a8=-49. Suma ośmiu początkowych wyrazów tego ciągu jest równa A. -168 B. -189 C. -21 D. -42 Czytaj dalej"Matura 2019 p. podstawowy matematyka - z. 11" Zadanie 14 (0-1) Dla pewnej liczby x ciąg (x, x+4, 16) jest geometryczny. Liczba x jest równa Czytaj dalej"Matura 2018 p. pdst. sierpień matematyka - z. 14" Zadanie 13 (0-1) Ciąg arytmetyczny (an), określony dla n≥1, spełnia warunek a3+a4+a5=15. Wtedy A. a4=5 B. a4=6 C. a4=3 D. a4=4 Czytaj dalej"Matura 2018 p. pdst. sierpień matematyka - z. 13" NDVh7.
  • 4nka4tnh75.pages.dev/162
  • 4nka4tnh75.pages.dev/148
  • 4nka4tnh75.pages.dev/192
  • 4nka4tnh75.pages.dev/399
  • 4nka4tnh75.pages.dev/363
  • 4nka4tnh75.pages.dev/82
  • 4nka4tnh75.pages.dev/298
  • 4nka4tnh75.pages.dev/390
  • 4nka4tnh75.pages.dev/131
  • oblicz sumę 5 9 13